3.7.33 \(\int \frac {x^3 (a+b \arcsin (c x))}{(d+e x^2)^2} \, dx\) [633]

3.7.33.1 Optimal result
3.7.33.2 Mathematica [A] (verified)
3.7.33.3 Rubi [A] (verified)
3.7.33.4 Maple [C] (warning: unable to verify)
3.7.33.5 Fricas [F]
3.7.33.6 Sympy [F]
3.7.33.7 Maxima [F]
3.7.33.8 Giac [F]
3.7.33.9 Mupad [F(-1)]

3.7.33.1 Optimal result

Integrand size = 21, antiderivative size = 574 \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\frac {d (a+b \arcsin (c x))}{2 e^2 \left (d+e x^2\right )}-\frac {i (a+b \arcsin (c x))^2}{2 b e^2}-\frac {b c \sqrt {d} \arctan \left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{2 e^2 \sqrt {c^2 d+e}}+\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^2} \]

output
1/2*d*(a+b*arcsin(c*x))/e^2/(e*x^2+d)-1/2*I*(a+b*arcsin(c*x))^2/b/e^2+1/2* 
(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)- 
(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2) 
)*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arcsin(c*x))*ln(1 
-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/e^2+ 
1/2*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1 
/2)+(c^2*d+e)^(1/2)))/e^2-1/2*I*b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))*e^ 
(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/e^2-1/2*I*b*polylog(2,(I*c*x+(-c^2 
*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/e^2-1/2*I*b*polyl 
og(2,-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2))) 
/e^2-1/2*I*b*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+ 
(c^2*d+e)^(1/2)))/e^2-1/2*b*c*arctan(x*(c^2*d+e)^(1/2)/d^(1/2)/(-c^2*x^2+1 
)^(1/2))*d^(1/2)/e^2/(c^2*d+e)^(1/2)
 
3.7.33.2 Mathematica [A] (verified)

Time = 0.87 (sec) , antiderivative size = 593, normalized size of antiderivative = 1.03 \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\frac {\frac {2 a d}{d+e x^2}+2 a \log \left (d+e x^2\right )+b \left (\sqrt {d} \left (\frac {\arcsin (c x)}{\sqrt {d}+i \sqrt {e} x}-\frac {c \arctan \left (\frac {i \sqrt {e}+c^2 \sqrt {d} x}{\sqrt {c^2 d+e} \sqrt {1-c^2 x^2}}\right )}{\sqrt {c^2 d+e}}\right )-i \sqrt {d} \left (-\frac {\arcsin (c x)}{i \sqrt {d}+\sqrt {e} x}-\frac {c \text {arctanh}\left (\frac {\sqrt {e}+i c^2 \sqrt {d} x}{\sqrt {c^2 d+e} \sqrt {1-c^2 x^2}}\right )}{\sqrt {c^2 d+e}}\right )-i \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )-i \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )}{4 e^2} \]

input
Integrate[(x^3*(a + b*ArcSin[c*x]))/(d + e*x^2)^2,x]
 
output
((2*a*d)/(d + e*x^2) + 2*a*Log[d + e*x^2] + b*(Sqrt[d]*(ArcSin[c*x]/(Sqrt[ 
d] + I*Sqrt[e]*x) - (c*ArcTan[(I*Sqrt[e] + c^2*Sqrt[d]*x)/(Sqrt[c^2*d + e] 
*Sqrt[1 - c^2*x^2])])/Sqrt[c^2*d + e]) - I*Sqrt[d]*(-(ArcSin[c*x]/(I*Sqrt[ 
d] + Sqrt[e]*x)) - (c*ArcTanh[(Sqrt[e] + I*c^2*Sqrt[d]*x)/(Sqrt[c^2*d + e] 
*Sqrt[1 - c^2*x^2])])/Sqrt[c^2*d + e]) - I*(ArcSin[c*x]*(ArcSin[c*x] + (2* 
I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2*d + e])] + L 
og[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*Po 
lyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2*d + e])] + 2 
*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e]))]) 
 - I*(ArcSin[c*x]*(ArcSin[c*x] + (2*I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]) 
)/(-(c*Sqrt[d]) + Sqrt[c^2*d + e])] + Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/ 
(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]) 
)/(c*Sqrt[d] - Sqrt[c^2*d + e])] + 2*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]) 
)/(c*Sqrt[d] + Sqrt[c^2*d + e])])))/(4*e^2)
 
3.7.33.3 Rubi [A] (verified)

Time = 1.33 (sec) , antiderivative size = 574, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5232

\(\displaystyle \int \left (\frac {x (a+b \arcsin (c x))}{e \left (d+e x^2\right )}-\frac {d x (a+b \arcsin (c x))}{e \left (d+e x^2\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^2}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^2}+\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^2}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^2}+\frac {d (a+b \arcsin (c x))}{2 e^2 \left (d+e x^2\right )}-\frac {i (a+b \arcsin (c x))^2}{2 b e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {b c \sqrt {d} \arctan \left (\frac {x \sqrt {c^2 d+e}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{2 e^2 \sqrt {c^2 d+e}}\)

input
Int[(x^3*(a + b*ArcSin[c*x]))/(d + e*x^2)^2,x]
 
output
(d*(a + b*ArcSin[c*x]))/(2*e^2*(d + e*x^2)) - ((I/2)*(a + b*ArcSin[c*x])^2 
)/(b*e^2) - (b*c*Sqrt[d]*ArcTan[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[1 - c^2* 
x^2])])/(2*e^2*Sqrt[c^2*d + e]) + ((a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^ 
(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*ArcS 
in[c*x])*Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + 
e])])/(2*e^2) + ((a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/( 
I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*ArcSin[c*x])*Log[1 + ( 
Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*e^2) - (( 
I/2)*b*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d 
 + e]))])/e^2 - ((I/2)*b*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[ 
-d] - Sqrt[c^2*d + e])])/e^2 - ((I/2)*b*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[ 
c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e]))])/e^2 - ((I/2)*b*PolyLog[2, (Sqrt 
[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/e^2
 

3.7.33.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
3.7.33.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.85 (sec) , antiderivative size = 2101, normalized size of antiderivative = 3.66

method result size
derivativedivides \(\text {Expression too large to display}\) \(2101\)
default \(\text {Expression too large to display}\) \(2101\)
parts \(\text {Expression too large to display}\) \(2113\)

input
int(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/c^4*(1/2*a*c^6/e^2*d/(c^2*e*x^2+c^2*d)+1/2*a*c^4/e^2*ln(c^2*e*x^2+c^2*d) 
+b*c^4*(-I*(2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)+e)*arcsin(c*x)^2*d*c^2/e^4-1 
/2*I/e^2*sum((-_R1^2*e+4*c^2*d+2*e)/(-_R1^2*e+2*c^2*d+e)*(I*arcsin(c*x)*ln 
((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/ 
_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))-1/4*I*(d*c^2*(c^2*d+e))^(1 
/2)/c^2/d/e/(c^2*d+e)*arcsin(c*x)^2-1/8*I*(d*c^2*(c^2*d+e))^(1/2)/c^2/d/e/ 
(c^2*d+e)*polylog(2,e*(I*c*x+(-c^2*x^2+1)^(1/2))^2/(2*c^2*d+2*(d*c^2*(c^2* 
d+e))^(1/2)+e))+1/8*I*(2*d^2*c^4+2*(d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*c^2*e*d 
+(d*c^2*(c^2*d+e))^(1/2)*e)*polylog(2,e*(I*c*x+(-c^2*x^2+1)^(1/2))^2/(2*c^ 
2*d-2*(d*c^2*(c^2*d+e))^(1/2)+e))/e^2/d/c^2/(c^2*d+e)+1/4*I*(2*d^2*c^4+2*( 
d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*c^2*e*d+(d*c^2*(c^2*d+e))^(1/2)*e)*arcsin(c 
*x)^2/e^2/d/c^2/(c^2*d+e)+I*(2*d^2*c^4+2*(d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*c 
^2*e*d+(d*c^2*(c^2*d+e))^(1/2)*e)*d*c^2*arcsin(c*x)^2/e^4/(c^2*d+e)-(2*d^2 
*c^4+2*(d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*c^2*e*d+(d*c^2*(c^2*d+e))^(1/2)*e)* 
d*c^2*ln(1-e*(I*c*x+(-c^2*x^2+1)^(1/2))^2/(2*c^2*d-2*(d*c^2*(c^2*d+e))^(1/ 
2)+e))*arcsin(c*x)/e^4/(c^2*d+e)+1/2*I*(2*d^2*c^4+2*(d*c^2*(c^2*d+e))^(1/2 
)*d*c^2+2*c^2*e*d+(d*c^2*(c^2*d+e))^(1/2)*e)*d*c^2*polylog(2,e*(I*c*x+(-c^ 
2*x^2+1)^(1/2))^2/(2*c^2*d-2*(d*c^2*(c^2*d+e))^(1/2)+e))/e^4/(c^2*d+e)-1/4 
*(2*d^2*c^4+2*(d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*c^2*e*d+(d*c^2*(c^2*d+e))^(1 
/2)*e)*ln(1-e*(I*c*x+(-c^2*x^2+1)^(1/2))^2/(2*c^2*d-2*(d*c^2*(c^2*d+e))...
 
3.7.33.5 Fricas [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^3*arcsin(c*x) + a*x^3)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.7.33.6 Sympy [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^{3} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate(x**3*(a+b*asin(c*x))/(e*x**2+d)**2,x)
 
output
Integral(x**3*(a + b*asin(c*x))/(d + e*x**2)**2, x)
 
3.7.33.7 Maxima [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
1/2*a*(d/(e^3*x^2 + d*e^2) + log(e*x^2 + d)/e^2) + b*integrate(x^3*arctan2 
(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.7.33.8 Giac [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arcsin(c*x) + a)*x^3/(e*x^2 + d)^2, x)
 
3.7.33.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^3*(a + b*asin(c*x)))/(d + e*x^2)^2,x)
 
output
int((x^3*(a + b*asin(c*x)))/(d + e*x^2)^2, x)